In vivo protein tyrosine nitration in Arabidopsis thaliana

نویسندگان

  • Jorge Lozano-Juste
  • Rosa Colom-Moreno
  • José León
چکیده

Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-down potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography-mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3-phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction

SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...

متن کامل

Protein Tyrosine Nitration in Abiotic Stress in Plants

Research in the last two decades has proven, without a doubt, that nitric oxide (NO) is a cytotoxic as well as a signaling molecule in biological systems. NO is one of the nitrogen oxides present in air and being a free radical it is very reactive. It combines readily with all major macromolecules whether it is lipids, nucleic acids or proteins. Lipid and nucleic acid modification by NO are rel...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants.

Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visuali...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2011